深圳大学材料学院刘新科:基于氮化镓单晶衬底的半导体器件

中国半导体照明网
关注

电力电子器件:SBDs

主要创新成果:采用HVPE(Si掺)+MOCVD混合生长技术,充分利用HVPE技术具有生长速度快(7-8um/hour)和炭元素含量低(约1015cm-3)的显著特点,以及MOCVD生长速度可控和掺杂技术成熟的特点。

HVPE+MOCVD混合生长技术,以及TiN金属栅极结构的CMOS兼容工艺;在漂移层厚度12um的条件下,实现了击穿电压1200伏 。

主要创新成果:采用HVPE(Ge掺)+MOCVD混合生长技术,充分利用HVPE技术具有生长速度快(7-8um/hour)和炭元素含量低(约1015cm-3)的显著特点,以及MOCVD生长速度可控和掺杂技术成熟的特点。

具有应力的衬底在生长过程中带来的晶格大小变化,影响材料生长的质量(背景浓度)。HVPE的衬底生长采用Ge掺杂,不仅有利于提高激活率,而且减少应力。用Ge掺杂代替Si掺杂,带来了掺杂浓度高,衬底应力低。器件实现了16ns的反向回复时间。

电力电子器件:PNDs

主要创新成果:采用HVPE+MOCVD混合生长技术,充分利用HVPE技术具有生长速度快和炭元素含量低(约1015cm-3)的显著特点,以及MOCVD生长速度可控和掺杂技术成熟的特点。

面对大电流和大功率需要,垂直氮化镓PIN器件实现了1.2A的电流开关;

采用金属场板技术,实现了2400伏击穿电压;

在同质外延衬底上,实现大电压和大电流的二极管输出,实现反向恢复时间21ns.

声明: 本文系OFweek根据授权转载自其它媒体或授权刊载,目的在于信息传递,并不代表本站赞同其观点和对其真实性负责,如有新闻稿件和图片作品的内容、版权以及其它问题的,请联系我们。
侵权投诉

下载OFweek,一手掌握高科技全行业资讯

还不是OFweek会员,马上注册
打开app,查看更多精彩资讯 >
  • 长按识别二维码
  • 进入OFweek阅读全文
长按图片进行保存